top of page
  • Kasturi Rangan, M. L. N. V., and Ghosh, S. “A Face-Based Immersed Boundary Method for Compressible Flows Using a Uniform Interpolation Stencil.” Frontiers in Mechanical Engineering, Vol. 8, No. October, 2022, pp. 1–17. https://doi.org/10.3389/fmech.2022.903492.

  • Sandhu, J. P. S. & Ghosh, S. Dynamical Systems Analysis of a Zero-Equation Transition Model. AIAA J. 59, 4274–4280 (2021).

  • Dhileep, K. et al. Aerodynamic study of single corrugated variable-camber morphing aerofoil concept. Aeronaut. J. 1–29 (2021) doi:10.1017/aer.2021.71.

  • Roy, S., Sandhu, J. P. S. & Ghosh, S. Drag reduction in transonic shock-wave/boundary-layer interaction using porous medium: a computational study. Shock Waves 31, 117–132 (2021).

  • Sandhu, J. P. S., & Ghosh, S. (2021). A local correlation-based zero-equation transition model. Computers & Fluids, 214, 104758. https://doi.org/10.1016/j.compfluid.2020.104758

  • Bharadwaj, A. S., and Ghosh, S. “Numerical Investigation of Lift Enhancement in Flapping Hover Flight.” Physics of Fluids, Vol. 32, No. 5, 2020, p. 051901. https://doi.org/10.1063/5.0004021.

  • Sandhu, J., Girdhar, A., Ramakrishnan, R., Teja, R., & Ghosh, S. (2020). FEST-3D: Finite-volume Explicit STructured 3-Dimensional solver. Journal of Open Source Software, 5(46), 1555. https://doi.org/10.21105/joss.01555.

  • Bharadwaj S, A., & Ghosh, S. (2020). Data reconstruction at surface in immersed-boundary methods. Computers & Fluids, 196, 104236. https://doi.org/10.1016/j.compfluid.2019.104236.

  • Roy, S., Subramaniam, K., & Ghosh, S. (2019). Positioning of Normal Shock in a Novel Constant-Area Test Section: A Numerical Study. AIAA Journal, 57(12), 5582–5587. https://doi.org/10.2514/1.J057834

  • Chakravarthy, R. V. K., Nair, V., Muruganandam, T. M., & Ghosh, S. (2018). Analytical and numerical study of normal shock response in a uniform duct. Physics of Fluids, 30(8), 086-101. https://doi.org/10.1063/1.5027903

  • Sandhu, J. P. S., Ghosh, S., Subramanian, S., & Sharma, P.(2018). Evaluation of Ramp-Type Micro Vortex Generators Using Swirl Center Tracking. AIAA Journal, 56(9), 3449–3459. https://doi.org/10.2514/1.j056796.

  • Varma, D., & Ghosh, S. (2017). Flow Control in Mach 4.0 Inlet by Slotted Wedge-Shaped Vortex Generators. Journal of Propulsion and Power, 33(6), 1428–1438.  https://doi.org/10.2514/1.B36314.

  • Sharma, P., Varma, D., & Ghosh, S. (2016). Novel Vortex Generator for Mitigation of Shock-Induced Flow Separation. Journal of Propulsion and Power,32(5), 1264–1274. https://doi.org/10.2514/1.B35962.

  • Ghosh, S., Edwards, J. R., & Choi, Y.-I. (2012). Numerical Simulation of the Effects of Mesoflaps in Controlling Shock/Boundary-Layer Interactions. Journal of Propulsion and Power, 28(5), 955–970. https://doi.org/10.2514/1.B34297

  • Ghosh, S., Choi, J.-I., & Edwards, J. R. (2010). Simulation of Shock/Boundary-Layer Interactions with Bleed Using Immersed-Boundary Methods. Journal of Propulsion and Power, 26(2), 203–214. https://doi.org/10.2514/1.45297

  • Ghosh, S., Choi, J.-I., & Edwards, J. R. (2010). Numerical Simulations of Effects of Micro Vortex Generators Using Immersed-Boundary Methods. AIAA Journal, 48(1), 92–103.  https://doi.org/10.2514/1.40049.

  • Ghosh S., Dennis B.H., Han Z-X, (2008) "Numerical Investigation of Moisture Diffusion Effects on Underfill within Flip-Chip Packages," Int. Review of Mechanical Engineering, 2(3), 357-363. 

bottom of page